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1 Introduction

B physics provides outstanding opportunities to test the Standard Model. At the end of

the era of B-factories, a remarkable sample of processes has been measured accurately. On

the theoretical side, the dynamics of heavy-light systems is naturally dominated by two

scales: the heavy-quark mass mb corresponding to hard contributions and a hadronic scale

Λ related to soft, hadronic, contributions. It is therefore natural to deal with B-mesons

in the framework of the heavy-quark expansion, expanding observables in powers of 1/mb,

and to attempt to factorise hard and soft dynamics.

This has been progressively achieved within the frameworks of QCD factorisation [1–3]

and Soft-Collinear Effective Theory [4–8]. The hadronic input collecting soft physics are

not only the form factors, but also the light-cone distribution amplitudes, defined generally

as the matrix element of a non-local operator along a light-like direction. This quantity

provides the amplitude of probability of finding partons inside a hadron with given fractions

of the hadron momentum. For light hadrons, one can define a twist, corresponding to the
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power of the hard scale to which the distribution amplitude will contribute to a given

process, which is related to the number of partons and the Lorentz structure of interest [9].

For instance, the leading-twist distribution amplitude of the pion can be defined as:

〈π(p)|q̄(z2)[z2, z1]γµγ5q(z1)|0〉 = −ifπpµ

∫ 1

0
dx ei(xp·z2+x̄p·z1)φπ(x) (1.1)

where (z2 − z1)
2 = 0, x̄ = 1 − x, and the path-ordered exponential, ensuring the gauge

invariance of the expression, reads:

[z2, z1] = P exp

[

igs

∫ z2

z1

dyµAµ(y)

]

(1.2)

This distribution amplitude corresponds to picking up a pair of valence quark and anti-

quark in the pion, carrying a fraction x and x̄ of the pion momentum respectively.

In the early days of QCD and the parton model, distribution amplitudes of light

mesons were identified as key tools to analyse exclusive processes at high energy through

factorisation, and they have been analysed extensively [10–12]. Phenomenologically, sum

rules and lattice have been used to determine the values of their lowest moments [13–16].

Mathematically, the structure of the distribution amplitudes was described by exploiting

properties of the conformal group, providing a geometrical definition of twist compatible

with the phenomenological one in the case of light mesons [9].

The case of heavy-light mesons has been discussed only recently [17, 18], mainly due to

their importance in relation with B-physics, as shown in the case of non-leptonic decays [1–

3], semileptonic decays [19, 20], radiative decays [21–25]. It is possible to define two two-

parton distribution amplitudes φ+ and φ− from the most simple non-local matrix element:

〈0|q̄β(z)[z, 0](hv)α(0)|B(p)〉=−i
f̂B(µ)

4

[

(1+v/)

(

φ̃+(t)+
z/

2t
[φ̃−(t)−φ̃+(t)]

)

γ5

]

αβ

(1.3)

with the usual definitions of Heavy Quark Effective Theory (HQET) for the velocity

v = p/MB , the heavy-quark projection hv and the decay constant f̂B. The Fourier trans-

forms of the distribution amplitudes, depending on t = v · z read:

φ̃±(t) =

∫ ∞

0
dω e−iωtφ±(ω). (1.4)

It turns out that only one distribution amplitude, φ+, enters most of the computations

considered in the framework of factorisation (non-leptonic decays, B → V γ, B → γℓν)

at leading order in 1/mB . In cases where at least one of the outgoing particles has not a

light-like momentum, factorisation may still hold, but the formula involves the two distri-

bution amplitudes of the B meson. This is in particular the case for B → V γ∗, which has

an important potential to test the Standard Model [26, 27].

Another interesting place where the distribution amplitudes naturally occur is light-

cone sum rules. These sum rules allow in particular for a determination of form factors

of phenomenological relevance such as B → π, B → ρ. The purpose of sum rules is to

reexpress those form factors in terms of an integral of the distribution amplitude of one
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of the external mesons with a kernel resulting from the expansion of a properly chosen

correlator along the light-cone. Recently, sum rules with interesting properties have been

proposed to relate these form factors with B meson distribution amplitudes. In this context,

φ− plays a dominant role and its modeling can improve the determination of the form

factors [28–31].

One can also define distribution amplitudes beyond the two-parton level. Interestingly,

one can exploit quark equations of motion in order to relate two-parton and three-parton

distribution amplitudes, which are defined in the case of heavy-light mesons through:

〈0|q̄β(z)[z, uz]gGµν (uz)zν [uz, 0](hv)α(0)|B(p)〉 (1.5)

=
f̂B(µ)M

4

[

(1 + v/)
[

(vµz/ − tγµ)
(

Ψ̃A(t, u) − Ψ̃V (t, u)
)

− iσµνzνΨ̃V (t, u)

−zµX̃A(t, u) +
zµz/

t
ỸA(t, u)

]

γ5

]

αβ

A good model for the distribution amplitudes of φ+ and φ− must embed as many

theoretical constraints as possible. Not much can be said for sure, apart from sum rule

estimates [32, 33], the expected behaviour at the origin (φ+(ω) ∼ ω and φ−(ω) ∼ 1

for ω → 0), and the properties of these quantities under renormalisation, which can be

derived from perturbation theory. One must notice that differences between light-meson

and heavy-light meson in terms of the renormalisation properties [33] exist: the limit

in one case is the chiral limit, which modifies only long-distance properties, whereas the

heavy-quark limit affects short-distance features of the theory (the UV structure of HQET

is qualitatively different from QCD). This explains the non-commutation of the heavy-

quark limit with the light-cone limit (contrary to the chiral limit). In the case of heavy-

quark distribution amplitude, there is no equivalent of Gegenbauer moments of light-meson

distribution amplitudes, which mix only into themselves under renormalisation.

The RGE behaviour of φ+ and φ− has been investigated in refs. [34] and [35]. It

was shown in particular that RGE generates a radiative tail, leading to a divergence of

positive moments of these quantities. In particular, there is no absolute normalisation

of φ± to 1 from its zeroth moment, so that a naive partonic interpretation like in the

pion case is not possible after renormalisation. To obtain the first inverse moments of

φ+ and φ−, which are relevant phenomenologically, one needs the knowledge of the whole

distribution amplitude. But the previous behaviours and models were derived in the two-

parton approximation, even though the equation of motions indicate the potential mixing

with three-parton distribution amplitudes.

The goal of this paper is to understand the renormalisation of these objects at the first

nontrivial order of the strong coupling constant, including the contribution from three-

parton distribution amplitudes. This task requires us to consider a three-parton external

state (a quark, an antiquark and a gluon). In section 2, we recall the behaviour of φ+ and

φ− under renormalisation as determined from a two-parton external state. In section 3, we

give the one-loop diagrams and their ultraviolet divergences in the case of a three-parton

external state. In section 4, we determine the mixing of φ+ and φ− with three-parton

distribution amplitudes at one loop, and we show that there is no mixing in the case of φ+,
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whereas φ− mixes with the difference ΨA − ΨV . In section 4, we extend our calculation,

performed in the Feynman gauge, to a general covariant gauge, which provides a check of

the gauge independence of our results (more detailed results are given in appendix A). In

section 5, we make a few comments before concluding.

2 Two-parton B-meson distribution amplitudes

We set up our framework by introducing notation and definitions, and we recall the results

obtained on the renormalisation of the B-meson distribution amplitudes. We define light-

cone directions by two vectors

n2
+ = n2

− = 0 n+ · n− = 2 v = (n+ + n−)/2 (2.1)

so that an arbitrary vector can be projected as

qµ = (n+ · q)
n−,µ

2
+ (n− · q)

n+,µ

2
+ q⊥µ = q+

n−,µ

2
+ q−

n+,µ

2
+ q⊥µ (2.2)

The computation of the renormalisation properties of the distribution amplitudes re-

quires us to consider matrix elements of the relevant operators

OH
+ (ω) =

1

2π

∫

dteiωt〈0|q̄(z)[z, 0]n/+Γhv(0)|H〉 (2.3)

OH
− (ω) =

1

2π

∫

dteiωt〈0|q̄(z)[z, 0]n/−Γhv(0)|H〉 (2.4)

OH
3 (ω, ξ) =

1

(2π)2

∫

dteiωt

∫

dueiξut〈0|q̄(z)[z, uz]gsGµν(uz)zν [uz, 0]Γhv(0)|H〉 (2.5)

with z parallel to n+, i.e. zµ = tn+,µ, t = v · z = z−/2 and the path-ordered exponential in

the n+ direction:

[z, 0] = P exp

[

igs

∫ z

0
dyµAµ(y)

]

(2.6)

= 1 + igs

∫ 1

0
dα zµAµ(αz) − g2

s

∫ 1

0
dα

∫ α

0
dβzµ zν Aµ(αz) Aν(βz) + · · · (2.7)

We define the different distribution amplitudes in momentum space through their Fourier

transforms:

φ±(ω) =
1

2π

∫

dteiωtφ̃±(t) F (ω, ξ) =
1

(2π)2

∫

dt

∫

dutei(ω+uξ)tF̃ (t, u) (2.8)

where F = ΨV ,ΨA,XA, YA.

The renormalisation group equation of φ+ and φ− can be determined by computing

the mixing terms Z defined in the following expression (since we work in the chiral limit,

we omit mixing terms between φ+ and φ− which were shown in ref. [35] to be proportional

to the mass of the light-quark.)

OH,ren
± (ω, µ)=

∫

dω′Z−1
± (ω, ω′;µ)OH,bare

± (ω′)+

∫

dω′dξ′Z−1
±,3(ω, ω′, ξ′;µ)OH,bare

3 (ω′, ξ′)+· · ·

(2.9)
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HO LO HL

Figure 1. Diagrams evaluated to determine the renormalisation constant Z± using a two-parton

external state (the two letters describe the ends of the gluon line: Heavy quark, Light quark or

Operator, i.e. the path-ordered exponential).

where the ellipsis involves matrix elements of operators corresponding to a higher number

of partons (a similar equation for operators related to a higher number of partons instead

of O± could be written, with operators corresponding to an arbitrary number of partons on

the right-hand side). The behaviour under renormalisation being a short-distance property,

any choice of H is allowed in principle. For instance, Z± were computed in refs. [34, 35]

using a two-parton external state with on-shell quarks H = h(p)q̄(k), for which one obtains

at leading order:

OH
± (ω) = δ(ω − k+) v̄n/±Γu OH

3 (ω, ω′) = 0 (2.10)

Computing NLO terms provides Z± in eq. (2.9). However convenient, this choice of external

state prevents us from determining Z±,3 describing the mixing between O± and O3, since

OH
3 vanishes then.

One can still write down the RGE restricted to φ± as

d

d log µ
φ±(ω, µ) = −

∫ ∞

0
dω′γ±(ω, ω′, µ)φ±(ω′, µ) + · · · (2.11)

γ±(ω, ω′, µ) = −

∫

dω̃
dZ−1

± (ω, ω̃, µ)

d log µ
Z±(ω̃, ω′, µ) − γF (αs)δ(ω − ω′) (2.12)

where γF is due to the normalisation of the distribution amplitudes which involves the

(renormalisation-scale dependent) HQET decay constant.

Working in dimensional regularisation with d = 4 − 2ε dimensions, in the Feynman

gauge and in the M̄S scheme, one obtains from the three diagrams shown in figure 1 [34, 35]:

Z±|HO =
αsCF

4π
× 2 ×

1

ε

∫ ∞

0

dl+
l+

(

l2+
µ2

)−ε

[δ(ω − ω′ − l+) − δ(ω − ω′)] (2.13)

Z±|LO =
αsCF

4π
× (−2) ×

1

ε

∫ ω′

0

dl+
l+

l+ − ω′

ω′
[δ(ω′ − ω − l+) − δ(ω′ − ω)] (2.14)

Z−|HL =
αsCF

4π
× 2 ×

1

ε

∫ ω′

0

dl+
ω′

δ(ω′ − ω − l+) Z+|HL = 0 (2.15)

Only the diagram where the gluon line connects the two external legs differs for φ+ and

φ−. In addition, one has contributions from the wave-function renormalisation of the ex-

ternal legs:

Z±|wfr−H = Z
1/2
h =

αsCF

4π
×

1

ε
δ(ω − ω′) (2.16)
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Z±|wfr−L = Z1/2
q =

αsCF

4π
×

(

−
1

2

)

×
1

ε
δ(ω − ω′) (2.17)

so that Z± is δ(ω − ω′) corrected at one loop by the sum of eqs. (2.13)–(2.17).

This leads to the following anomalous dimensions:

γ
(1)
+ =

(

Γ(1)
cusp log

µ

ω
+ γ(1)

)

δ(ω − ω′) − Γ(1)
cuspω

(

θ(ω′ − ω)

ω′(ω′ − ω)
+

θ(ω − ω′)

ω(ω − ω′)

)

+

(2.18)

γ
(1)
− = γ

(1)
+ − Γ(1)

cusp

θ(ω′ − ω)

ω′
(2.19)

with

Γ(1)
cusp = 4CF γ(1) = −2CF γ

(1)
F = −3CF (2.20)

Quantities with a superscript (1) must be multiplied by αs

4π . The anomalous dimension is of

the Sudakov type, which is related to the fact that the operators of interest can be seen as

containing two Wilson lines, one from the heavy quark along the v direction (representing

the interaction of soft gluons with hv) from −∞ to 0, linked with another one along the n+

direction from 0 to z. The presence of a cusp between the two Wilson lines is responsible

for the appearance of a Sudakov-like behaviour of the anomalous dimension [34, 36, 37].

3 One-loop computation for three-particle external state

We perform the same computation, taking as an external state H = h(p)g(ǫ, q)q̄(k) contain-

ing three partons. We compute the diagrams at one loop, using dimensional regularisation,

and we pay a special attention to separating ε-poles related to UV divergences and IR

divergences carefully. We then identify the ǫ-poles corresponding to UV divergences as

part of the renormalisation function in:

OH,bare
± (ω) =

∫

dω′Z±(ω, ω′;µ)OH,ren
± (ω′, µ) +

∫

dω′dξ′Z±,3(ω, ω′, ξ′;µ)OH,ren
3 (ω′, ξ′, µ)

(3.1)

Subtracting the contribution from Z± ⊗ OH
± will yield the mixing term Z±,3 between two

and three-particle distribution amplitudes.

At leading order, we obtain three different contributions, denoted A,B,C, for the

matrix element of O±, shown in figure 2. The expression for C can be simplified using the

following relations

ǫ · q = 0 v/u = u v̄k/ = 0 (3.2)

For O3, we have a leading-order expression indicated in figure 3.

One can easily spell out the diagrams for O± at one loop by taking the above three

diagrams ABC, and adding a new gluon line in all possible ways (our naming scheme

reflects this idea). Diagram A yields the diagrams in figure 4, whereas the other diagrams

coming from B and C are show in figure 5. Let us notice the presence of redundant

diagrams, namely (B24) = (A12), (C24) = (A23), (B25) = (B12), (C25) = (C12).

– 6 –
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p k

µ, ǫ, a

A : −gs
ǫ+

q+
[δ (ω − k+ − q+) − δ (ω − k+)] v̄n/−ΓT au

B : −gs
v · ǫ

v · q
δ (ω − k+) v̄n/−ΓT au C : gs

1

(k + q)2
δ (ω − k+ − q+) v̄ǫ/(k/ + q/)n/−ΓT au

Figure 2. The three leading-order contributions to the matrix element of O± with a three-parton

external state.

p k

µ, ǫ, a

3

A3µ : igs(q+ǫµ − qµǫ+) v̄ΓT auδ(ω − k+)δ(ξ − q+)

Figure 3. Leading-order contribution to the matrix element of O3µ with a three-parton external

state.

3.1 Common contributions

Since we are interested in the renormalisation properties of the distribution amplitudes in

the M̄S scheme, we quote here only the poles in ε defined as d = 4 − 2ε corresponding

to ultraviolet divergences (we discuss our integration procedure on one example explicitly

in appendix A). For the integrals going up to infinity, we keep the expression of the

kernels before picking up the pole in ε, since the integration may give rise to double poles

in the expression of γ±,3, related to Sudakov logarithms. We do not give the expressions

corresponding to the wave-function renormalisation of the external legs, i.e., (11), (22), (33).

The following diagrams yield contributions of the same form for both distribution

amplitudes:

(A12) = −
αs

4π
CA

(

1

2

)

gsǫ+ v̄n/±ΓT au
1

ε

∫ 0

−q+

dl+
1

q+l+
[δ (ω − k+ + l+) − δ (ω − k+)]

(A14) = −
αs

4π
(gsǫ+) v̄n/±ΓT au

1

ε

∫ ∞

0
dl+

(

l2+
µ2

)−ε

– 7 –
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A11 A12 A13 A14

A22 A23 A24 A33

A34 A44

Figure 4. One-loop diagrams obtained from diagram A.

×

[

2CF

l+q+
{[δ (ω−k+−q+−l+)−δ (ω−k+−q+)]+[δ (ω−k+)−δ (ω−k+−l+)]

}

−
CA

q+

{

1

l+ + q+
[δ (ω−k+−q+−l+)−δ (ω−k+)]−

1

l+
[δ (ω−k+−l+)−δ (ω−k+)]

}]

(A24) = −
αs

4π
CA

(gsǫ+)

2
v̄n/±ΓT au

1

ε

∫ 0

−q+

dl+
2l+ + q+

q+(q+ + l+)

×

[

1

l+
[δ (ω − k+ + l+) − δ (ω − k+)] +

1

q+
[δ (ω − k+ − q+) − δ (ω − k+)]

]

(A34) =
αs

4π
(gsǫ+) v̄n/±ΓT au

1

ε

∫ k+

0

dl+
l+

k+ − l+
k+

×

[

2CF

q+
{[δ (ω−k+−q+)−δ (ω−k+−q++l+)] +[δ (ω−k++l+)−δ (ω−k+)]

}

−CA

{

1

l+ + q+
[δ (ω − k+ − q+) − δ (ω − k+ + l+)]

−
1

q+
[δ (ω − k+ − q+ + l+) − δ (ω − k+ + l+)]

}]

(A44) = 0

For diagrams of B-type, we obtain:

(B12) = 0

(B13) = 0

(B14) = 0

– 8 –
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(B15) = −
αs

4π
gs

1

ε
(CA − 2CF )

v · ǫ

v · q
δ (ω − k+) v̄n/±ΓT au

(B34) = B ⊗ Z±|LO

(B35) = B ⊗ Z±|LH

(B44) = 0

(B45) = B ⊗ Z±|HO

(B55) = B × Zh

For diagrams of C-type, we obtain:

(C12) =
αs

4π
CA

3

2

1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

1

ε
δ (ω − k+ − q+)

(C15) =
αs

4π
(CF − CA/2)

1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

1

ε
δ (ω − k+ − q+)

(C34) = C ⊗ Z±|HO

(C35) = C ⊗ Z±|HL

(C44) = 0

(C55) = C × Zq

3.2 φ+

The remaining diagrams yield different contributions for φ+ and φ−. For φ+ we have the

following contributions:

(A13+) = 0

(A23+) =
αs

4π
CA

(gsǫ+)

2
v̄n/+ΓT au

1

ε

[
∫ 0

−q+

dl+
q+

(k+ − q+ − 2l+) − 2

∫ k+

0

dl+
k+

(k+ − l+)

]

×
1

(k+ + q+)(l+ + q+)
{δ(ω − k+ − q+) − δ(ω − k+ + l+)}

(B23+) = 0

(C13+) = 0

(C14+) = −
αs

4π
(CA − 2CF )gs

1

ε
v̄n/+ΓT auǫ+

[
∫ k+

0

dl+
k+

+

∫ k++q+

k+

dl+
q+

k+ + q+ − l+
l+

]

×
1

k+ + q+
{δ(ω − k+ − q+) − δ(ω − k+ − q+ + l+)}

(C45+) = C ⊗ Z+|LO

3.3 φ−

For φ−, the remaining diagrams yield the following contributions:

(A13−) =
αs

4π
(CA − 2CF ) gsǫ+ v̄n/−ΓT au

1

ε

×

∫ k+

0
dl+

1

q+k+
[δ (ω − k+ − q+ + l+) − δ (ω − k+ + l+)]

– 9 –
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B11 C11 B12 C12

B13 C13 B14 C14

B15 C15 B22 C22

B23=C23 B33 C33

B34 C34 B35 C35

B44 C44 B45 C45

B55 C55

Figure 5. One-loop diagrams obtained from diagrams B and C.
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(A23−) =
αs

4π
CA

1

2
gs

1

ε

×

{

ǫ+ v̄n/−ΓT au

[
∫ k+

0

dl+
k+

(

l+ − q+ − 2k+

(

1 +
k+ − l+
k+ + q+

))

+

∫ 0

−q+

dl+
q+

(

l+ + k+ − 2k+
l+ + q+

k+ + q+

)]

+ǫ+v̄q/⊥n/+n/−ΓT au

[

−

∫ k+

0

dl+
k+

l+ + q+

k+ + q+
+

∫ 0

−q+

dl+
q+

(l+ + q+)(k+ + 2q+)

q+(k+ + q+)

]

+
1

2
v̄ǫ/⊥n/+n/−ΓT au

[
∫ k+

0

dl+
k+

(q+ + l+ − 2k+) −

∫ 0

−q+

dl+
q+

(3q+ + l+)

]}

×
1

(k+ + q+)(q+ + l+)
[δ (ω − k+ − q+) − δ (ω − k+ + l+)]

(B23−) = −
αs

4π

CA

2
gs v̄[ǫ+n/− −

1

2
ǫ/⊥n/+n/−]ΓT au

1

ε

×

[
∫ 0

−q+

dl+
1

q+(q+ + k+)
−

∫ k+

0
dl+

1

k+(q+ + k+)

]

δ (ω − k+ + l+)

(C13−) =
αs

4π
(CA − 2CF )gsǫ+ v̄n/−ΓT au

1

ε

×

[
∫ 0

−q+

dl+
1

q+(q+ + k+)
−

∫ k+

0
dl+

1

k+(q+ + k+)

]

δ (ω − q+ − l+)

(C14−) =
αs

4π
(CA − 2CF )gs

1

ε

×

{

ǫ+v̄n/−ΓT au

[
∫ k+

0

dl+
k+

(

l+ − k+
k+ − l+
k+ + q+

)

−

∫ 0

−q+

dl+
q+

k+
l+ + q+

k+ + q+

]

+
1

2
ǫ+v̄q/⊥n/+n/−ΓT au

[
∫ k+

0

dl+
k+

k+ − l+
k+ + q+

+

∫ 0

−q+

dl+
q+

(

l+
q+

+
l+ + q+

k+ + q+

)]

+
1

2
v̄ǫ/⊥n/+n/−ΓT au

[
∫ k+

0

dl+
k+

l+−

∫ 0

−q+

dl+
q+

l+

]}

×
1

(k+ − l+)(k+ + q+)
[δ (ω − k+ − q+) − δ (ω − q+ − l+)]

(C45−) = C ⊗ Z−|LO − 2
αs

4π
CF gs v̄[ǫ+n/− +

1

2
ǫ/⊥n/+n/−]ΓT au

1

ε

×

∫ k++q+

0

dl+
l+

k+ + q+ − l+
(k+ + q+)2

[δ (ω−k+−q++l+)−δ (ω−k+−q+)]

(C45−) contains an additional contribution compared to the two-parton case, because

the determination of Z−|LO relied on the fact that the light-quark coming out of the vertex

was on shell, which is not the case for (C45) in the three-parton case.
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4 One-loop mixing of φ± with 3-parton distribution amplitudes

4.1 φ+

Having calculated the divergent part of all possible diagrams the renormalisation matrix

can be determined in a similar manner to ref. [17]. We write:

Z±(ω, ω′;µ)=δ(ω−ω′)+
αs(µ)

4π
z
(1)
± (ω, ω′;µ) Z±,3(ω, ω′, ξ′;µ)=

αs(µ)

4π
z
(1)
3±(ω, ω′, ξ′;µ), (4.1)

with z
(1)
± being proportional to CF . One can schematically write for the matrix element of

the bare operator up to one loop:

〈0|O±(ω)|H〉bare = Z
1/2
h Z1/2

q Z
1/2
3 Zg[A + B + C]bare (4.2)

+[B34+B35+B45+C34+C35+C45]+[B12+B15+C12+C15+B55+C55]

+[A12 + A13 + A14 + A23 + A24 + A34 + B23 + C13 + C14]

= [A + B + C]ren(µ) (4.3)

+
αs

4π

∫

dω′z
(1)
± (ω, ω′;µ)[A + B + C](ω′) +

αs

4π

∫

dω′dξ′z
(1)µ
3± (ω, ω′, ξ′;µ)A3µ(ω′, ξ′),

where the renormalisation constants Zh, Zq, Z3 and Zg come from the heavy-quark, light-

quark and gluon external legs and the coupling constant respectively in the leading order

contribution. Since the matrix element of the renormalized operator O±(ω;µ) must stay

finite for ε → 0 and since we know z
(1)
± (ω, ω′;µ), we can determine z

(1)
3±(ω, ω′ξ′;µ) from the

poles of the diagrams listed in (4.2).

In the case of B and C, the diagrams (B34), (B35), (B45) and (C34), (C35), (C45)

together with the fermion wave function renormalisation Z
1/2
h and Z

1/2
q , given in eqs. (2.16)–

(2.17), add up as indicated above to B ⊗ z
(1)
± and C ⊗ z

(1)
± respectively. The combination

of the renormalisation constant for the coupling constant and the gluon field tensor is:

Z
1/2
3 Zg = 1 −

αsCA

4πǫ
(4.4)

so that its contribution multiplied by B and C cancels the CA-part of (B12) + (B15) and

(C12)+(C15), whereas the CF -part of the same diagrams is cancelled by (B55) and (C55),

as expected from general arguments on the renormalisation of the quark-gluon vertex.

The remaining diagrams in eq. (4.2) must be added, and one has to subtract A ⊗ z
(1)
±

to extract the three-parton contribution, which amounts to subtracting:

A ⊗ Z±|HO = 2
αsCF

4π
Γ

(

1

ε

)

× (−gs)
ǫ+

q+
v̄n/±ΓT au

∫ ∞

0

dl+
l+

(

l2+
µ2

)−ε

(4.5)

×[δ (ω−k+−q+−l+)−δ (ω−k+−q+)−δ (ω−k+−l+)+δ (ω−k+)]

A ⊗ Z±|LO = 2
αsCF

4π
Γ

(

1

ε

)

× gs
ǫ+

q+
v̄n/±ΓT au (4.6)

×

[
∫ q+

0

dl+
l+ − q+

l+ + k+

q+ + k+
[δ (ω − k+ − l+) − δ (ω − k+ − q+)]
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+

∫ 0

−k+

dl+
l+ − q+

l+ + k+

q+ + k+
[δ (ω − k+ − l+) − δ (ω − k+ − q+)]

−

∫ 0

−k+

dl+
l+

l+ + k+

k+
[δ (ω − k+ − l+) − δ (ω − k+)]

]

A ⊗ Z−|HL = 2
αsCF

4π

1

ε
× (−gs)

ǫ+

q+
v̄n/−ΓT au

[
∫ q+

0
dl+

1

q+ + k+
δ (ω − k+ − l+) (4.7)

+

∫ 0

−k+

dl+
−q+

k+(k+ + q+)
δ (ω − k+ − l+)

]

A ⊗ Z+|HL = 0 (4.8)

Let us focus on φ+ in the remaining part of this section. For the part proportional

to CF , the Sudakov-like contribution of (A14) matches that of ZHO and more generally,

an explicit computation shows that the diagrams in the fourth bracket of eq. (4.2) add up

exactly to the contribution from z
(1)
+ (which is proportional to CF ).

For the CA part, the contribution from (A14) may seem surprising at first glance, since

it seems to involve another Sudakov-like integral, with a double pole in 1/ǫ generated by

the integration of l+ up to infinity. But let us split the first integral in the CA term of (A14)

in two intervals, from 0 to q+ and from q+ to ∞, perform a change of variable l+ → l+ +q+

and add the second integral, we obtain:

1

ǫ

∫ ∞

0
dl+

[

(

l+
µ

)2ǫ

−

(

l+ + q+

µ

)2ǫ
]

1

l+ + q+
[δ (ω − k+ − q+ − l+) − δ (ω − k+)] (4.9)

−
1

ǫ

∫ q+

0
dl+

(

l+
µ

)2ǫ 1

l+
[δ (ω − k+ − l+) − δ (ω − k+)]

One can see that the first integral yields no pole in 1/ǫ, and the second integral provides

a simple pole. Summing up all the contributions proportional to CA (including that of the

renormalisation constants from the gluon field tensor and the strong coupling constant),

one observes that they cancel exactly.

In summary, the determination of the renormalisation properties of φ+ at one loop

with a three-parton external state yields a CF term equal to the self-mixing obtained from

the consideration of two-parton external state, and no CA term. This shows that φ+ mixes

only with itself, and not with three-parton distribution amplitudes, up to one loop.

The fact that φ+ occurs in most of the factorisation analyses for B-meson decays

suggests that it holds a special status with respect to other B-meson distribution am-

plitudes, which is somehow confirmed by our finding of an absence of mixing. For light

mesons, conformal symmetry would naturally explain the absence of mixing between dis-

tribution with different parton numbers and thus different twists [9]. In the heavy-quark

case, conformal symmetry cannot be invoked anymore [33], but our result may be the hint

of another symmetry singling out φ+ with respect to other distribution amplitudes and

explaining that γ+,3 = 0.
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4.2 φ−

We consider now φ−. One can follow the same argument as before, with a similar pattern

of cancellation for the diagrams yielding the same results for φ+ and φ−. In particular, one

recovers easily the contribution proportional to Z−, i.e. the contribution from self-mixing

derived from the two-particle case.

But the diagrams do not cancel completely, and there remains a genuine three-particle

contribution:

〈0|O−(ω)|H〉bare = [A + B + C]ren(µ) +
αs

4π

∫

dω′z
(1)
± (ω, ω′;µ)[A + B + C](ω′)

+
1

2

αs

4π
gs

1

ε

[

q+v̄(k)[ǫ/⊥(q)n/+n/−ΓT a]u(p)−v̄(k)[q/⊥n/+n/−ΓT a]u(p)ǫ+(q)
]

×

{

(CA−2CF )

[

1

q2
+

∫ k++q+

k+

dl+

(

1

l+
−

1

k+

)

+
1

(k++q+)2

∫ k++q+

0

dl+
k+

]

− CA
1

k+

[

1

(k+ + q+)2

∫ k++q+

0
dl+ −

1

q2
+

∫ q+

0
dl+

]}

×{δ(ω−k+−q++l+)−δ(ω−k+−q+)} , (4.10)

from which z
(1)µ
−,3 can be extracted. If we separate the Dirac structure

z
(1)µ
−,3 (ω, ω′, ξ′;µ) = z

(1)
−,3(ω, ω′, ξ′;µ)γµ

⊥n/+n/− (4.11)

we obtain

z
(1)
−,3(ω, ω′, ξ′;µ) = z

(1)
−,3(ω, ω′, ξ′)

= −
i

2ε

[

Θ(ω)

ω′

{

(CA−2CF )

[

1

ξ′2
ω − ξ′

ω′+ξ′−ω
Θ(ξ′−ω)+

Θ(ω′+ξ′−ω)

(ω′ + ξ′)2

]

− CA

[

Θ(ω′+ξ′−ω)

(ω′+ξ′)2
−

1

ξ′2
(

Θ(ω−ω′)−Θ(ω−ω′−ξ′)
)

]}]

+

. (4.12)

We defined the +-distribution as:

[

f(ω, ω′, ξ′)
]

+
= f(ω, ω′, ξ′) − δ(ω − ω′ − ξ′)

∫

dωf(ω, ω′, ξ′′) (4.13)

Inserting γµ
⊥n/+n/− into the definition of the three-particle distribution amplitudes one ob-

tains the following expression

O3(ω
′, ξ′) = 2(2 − D)

(

ΨA(ω′, ξ′) − ΨV (ω′, ξ′)
)

, (4.14)

which is exactly the combination arising in the constraint derived from the equation of

motion of the light quark in ref. [38]. At order αs, the other three-particle distribution

amplitudes do not mix with φ−.

One may use that to order αs the following relations hold [17]:

∂O−(ω;µ)

∂ log µ
=−

∫

dω′ ∂Z−(ω, ω′;µ)

∂ log µ
O−(ω′;µ)−

∫

dω′dξ′
∂Z−,3(ω, ω′, ξ′;µ)

∂ log µ
O3(ω

′, ξ′;µ),(4.15)
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∂φ−(ω;µ)

∂ log µ
= −

αs(µ)

4π

(
∫

dωγ
(1)
− (ω, ω′;µ)φ−(ω′;µ)

+

∫

dω′dξ′γ
(1)
−,3(ω, ω′, ξ′;µ)[ΨA − ΨV ](ω′, ξ′;µ)

)

and
∂Z−,3(ω, ω′, ξ′;µ)

∂ log µ
= −2ε

αs(µ)

4π
z
(1)
−,3(ω, ω′, ξ′). (4.16)

taking into account that Z−,3 starts only at O(αs). This leads to the anomalous dimension

γ
(1)
−,3:

γ
(1)
−,3(ω, ω′, ξ′;µ) = γ

(1)
−,3(ω, ω′, ξ′)

= 4

[

Θ(ω)

ω′

{

(CA − 2CF )

[

1

ξ′2
ω − ξ′

ω′ + ξ′ − ω
Θ(ξ′ − ω) +

Θ(ω′ + ξ′ − ω)

(ω′ + ξ′)2

]

− CA

[

Θ(ω′ + ξ′ − ω)

(ω′ + ξ′)2
−

1

ξ′2
(

Θ(ω − ω′) − Θ(ω − ω′ − ξ′)
)

]}]

+

(4.17)

corresponding to the one-loop mixing between φ− and ΨA − ΨV .

5 Calculation in a general covariant gauge

We have computed the mixing between gauge-invariant operators, and we could in principle

have chosen any gauge to perform our determination of the renormalisation properties of

the latter. We can check the validity of our previous computations by computing the

nontrivial diagrams considered previously in a general covariant gauge, where we replace

the Feynman-gauge gluon-propagator by

dab
µν(k) = −iδab

[

gµν − (1 − α)
kµ kν

k2

]

(5.1)

Our result should be gauge invariant, so that the parts proportional to (1 − α) should

cancel.

5.1 Two-parton external state and Z±

First, we can repeat the computation of refs. [34, 35], recalled in section 2, for the case of

a two-parton external state. The gauge dependent part is:

MHO± → −ig2
sCF (1 − α)

∫

d4l

(2π)4
v̄n/±ΓT au

1

l4
{δ(ω − k+ − l+) − δ(ω − k+)} , (5.2)

MLO± → −ig2
sCF (1 − α)

∫

d4l

(2π)4
v̄n/±ΓT au

1

l4
{δ(ω − k+ + l+) − δ(ω − k+)} , (5.3)

MHL± → ig2
sCF (1 − α)

∫

d4l

(2π)4
v̄n/±ΓT au

1

l4
δ(ω − k+ + l+). (5.4)

These integrals should be equipped with an infrared regulator (for instance, a gluon mass

mg) in order to ensure that we keep only the ultraviolet divergences of interest here when
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we pick up the poles in ε (otherwise, dimensional regularisation would treat both ultraviolet

and infrared divergences of the integral as poles in ε).

In ref. [39], such integrals were considered with a particular focus on the integration

over the different light-cone components d4l → 1
2dl+dl−d2l⊥. Let us suppose that we want

to integrate over l−. There is a single pole, at l− = (m2
g − iǫ +~l2⊥)/l+, that we can always

avoid by choosing the contour from above for l+ > 0 and from below for l+ < 0. It seems

to indicate that such integral should be 0, which is incorrect. As proposed in ref. [39],

a proper regularisation leads to the conclusion that an integration over the minus (plus)

component results in a delta-distribution δ(l+) (δ(l−)), and one gets the equality:

∫

d4l

(2π)4
1

l4
δ(ω − k+ ± l+) = δ(ω − k+)

∫

d4l

(2π)4
1

l4
(5.5)

We see that MHO and MLO vanish, whereas MHL cancels the gauge-dependent part of

the wave-function renormalisation for the heavy and the light quarks:

Zq = 1 + CF
αs

4π

1

ε
[−1 + (1 − α)] Zh = 1 + CF

αs

4π

1

ε
[2 + (1 − α)] (5.6)

Therefore, the gauge-dependent parts of the different contributions cancel and we have

checked that the expression of Z± is indeed gauge independent.

5.2 Three-parton external state and Z−3

The issue becomes a little more involved if a three-particle state is considered. The complete

formulae can be found in appendix B, but we can outline the pattern of cancellation for

the gauge-dependent part among the various diagrams.

We can identify the different gauge-dependent contributions in eq. (4.10). The dia-

grams (A44), (B44) and (C44), which vanish trivially in the Feynman gauge, have to be

taken into account, but their contributions can be shown to vanish through eq. (5.5). This

is also the case for the diagrams (A14), (A24) and (A34). (B13) and (B14) remain finite

as in the Feynman gauge.

In analogy with the two-particle case, the diagrams (B34), (B35), (B45) and (C34),

(C35), (C45) cancel with the gauge-dependent part of Z
1/2
q Z

1/2
h multiplied by B and C

respectively. One has to pay attention to (C35) and (C45) that give additional contribu-

tions canceling each other. (B12), (B15), (B55) and (C12), (C15), (C55) cancel against

the gauge-dependent part of Z
1/2
3 Zg multiplied by B and C respectively.

Finally, one is left with (A12), (A13), (A23), (B23), (C13), (C14) and

Z
1/2
h Z

1/2
2 ZgZ

1/2
3 × A. The sum of (C13) and (C14) is finite, and once eq. (5.5) is ap-

plied, only the following expressions remain:

(A12) = −ig3
s

CA

4
(1 − α)

∫

d4l

(2π)4
1

l4
1

q+
{δ(ω − k+ − q+) − δ(ω − k+)} v̄n/±ΓT auǫ+, (5.7)

(A13) = ig3
s

(

CA

2
−CF

)

(1−α)

∫

d4l

(2π)4
1

l4
1

q+
{δ(ω−k+−q+)−δ(ω−k+)}v̄n/±ΓT auǫ+, (5.8)

(A23) = −ig3
s

CA

4
(1 − α)

∫

d4l

(2π)4
1

l4
1

q+
{δ(ω − k+ − q+) − δ(ω − k+)} v̄n/±ΓT auǫ+, (5.9)
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(B23) = −ig3
s

CA

4
(1 − α)

∫

d4l

(2π)4
1

l4
1

q+
{δ(ω − k+ − q+) − δ(ω − k+)} v̄n/±ΓT auǫ+. (5.10)

Picking up the ultraviolet divergences from the integrals, we obtain finally for the sum:

αs

4π

(

CA

4
+ CF

)

(1 − α)
1

ε
v̄n/±ΓT auǫ+

1

q+
{δ(ω − k+ − q+) − δ(ω − k+)} (5.11)

which cancels exactly the (1 − α)-dependent part of the combination

Z
1/2
h Z

1/2
2 ZgZ

1/2
3 × A =

(

1 +
αs

4π

1

ε

(

CF

2
[1 + 2(1 − α)] −

CA

4
[4 − (1 − α)]

))

× A, (5.12)

The calculation for φ+(ω) is simpler, since the replacement of n/− by n/+ implies the absence

of contributions proportional to v̄ǫ/n/+n/−ΓT au. Therefore the additional terms of (C35)

and (C45) vanish as well as the gauge-dependent contributions of the diagrams (C13)

and (C14). Following the same lines in both cases, one can conclude that there is no

gauge-dependence for the renormalisation of φ+ and φ−.

6 Conclusion

In this paper, we have studied the mixing of both two-particle distribution amplitudes φ+

and φ− with three-particle ones up to one-loop. Using the fact that RGE is a short-distance

property of the operator, we used matrix elements of the operators with a quark-antiquark-

gluon external state. Determining the ultraviolet divergences of the corresponding diagrams

allowed us to recover the known one-loop self-mixing of φ+ and φ−, but also to determine

the role of three-parton distribution amplitudes. We have established that φ+ mixes only

with itself, whereas φ− does mix with [ΨA −ΨV ], and we have provided the corresponding

anomalous dimension. Through the use of a general covariant gauge, we have checked that

our results were indeed gauge invariant, providing further support to our expressions.

We can relate our results to other comments on the B-meson distribution amplitudes

in the literature. For instance, the fact that φ+ does not mix with three-parton distribution

amplitudes was already presented in ref. [40]. In this article, a computation similar to ours

was sketched in the case of φ+, with the conclusion (presented in eq. (2) of this reference)

that the only ultraviolet one-loop divergence for O+ is proportional to itself, whereas

contributions proportional to higher-dimension operators have only infrared divergences.

As mentioned in the introduction, the presence of δ(ω − ω′) log(µ/ω) in the

renormalization-matrices provides a radiative tail to φ± falling off like (log ω)/ω for large ω.

It requires one to consider either negative moments of the distribution amplitudes φ−, φ+,

or positive moments with an ultraviolet cut-off [17, 34, 35, 40, 41]:

〈ωN 〉±(µ) =

∫ ΛUV

0
dω ωN φ±(ω;µ) (6.1)

On the contrary, it is interesting to notice the limit

lim
ΛUV→∞

∫ ΛUV

0
dω ωN z

(1)
−,3(ω, ω′, ξ′) = 0 N = 0, 1 (6.2)
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This is relevant for the calculation of the three-particle contributions to the moments:

∫ ΛUV

0
dω ωN φ−(ω;µ) = 1 +

αs

4π

(
∫

dω′ φ−(ω′)

∫ ΛUV

0
dω ωN z

(1)
− (ω, ω′;µ) (6.3)

−

∫

dω′dξ′(2 − D)[ΨA − ΨV ](ω′, ξ′)

∫ ΛUV

0
dω ωN z

(1)
−,3(ω, ω′, ξ′)

)

Therefore, there is no contribution to the two lowest moments of φ− from three-particle

distribution amplitudes, which confirms the statement made after eq. (62) in ref. [35].

We have explicitly checked that this property of z
(1)
−,3 does not hold for higher positive

moments (N ≥ 2).

In ref. [38] (see also refs. [42–44]) were derived two different relations between φ+ and

φ− on one hand and the four three parton-distribution amplitudes ΨV , ΨA, XA and YA on

the other hand:

ωφ′
−(ω) + φ+(ω) = I(ω) (6.4)

(ω − 2Λ̄)φ+(ω) + ωφ−(ω) = J(ω) (6.5)

I (J) is an integro-differential expression involving ΨA −ΨV (ΨA +XA and ΨV ). The first

relation comes from the equation of motion for the light quark and the latter one from the

heavy quark (as suggested by the presence of the HQET parameter Λ̄ = MB − mb). The

use of the equation of motion of the heavy quark was criticised in ref. [33, 35], because

this is linked to the heavy-quark limit which does not commute with the light-cone limit.

Moreover, this equation can be derived only if one leaves the light-cone limit, which is not

needed for the first relation. One can notice that the shapes of the distribution amplitudes

have been derived in the Wandura-Wilczek approximation, where three-parton distribu-

tion amplitudes are neglected (I = J = 0), leading to rather unphysical shapes for the

distribution amplitudes. If we assume that the three-particle distribution amplitudes mix

separately into themselves [45, 46], our work shows that the renormalisation-scale depen-

dence of eq. (6.4), derived from the light-quark equation of motion, is satisfying: by apply-

ing d/d log µ to the equation of motion, both φ− and ΨA − ΨV yield a term proportional

to ΨA − ΨV . The contributions proportional to the two-particle distribution amplitudes

were shown to cancel in the Wandzura-Wilczek approximation in appendix D of ref. [35]

(eq. (6.4) was also shown to hold in a specific non-relativistic model for φ+, φ−,ΨA,ΨV in

appendix C of the same reference). Eq. (6.5) does not seem to have such a satisfactory

renormalisation-scale dependence, which would add to the various criticisms raised against

this equation (see ref. [45] for further discussion of this issue).

More generally, the influence of three-particle distribution-amplitudes on φ−(ω;µ) re-

quires one to model them. However, the only available models [31] assume ΨA(ω, ξ) =

ΨV (ω, ξ) and they yield no contribution to the evolution of φ−(ω;µ). For practical cal-

culations as well as for further model-building of distribution amplitudes beyond φ+, one

needs the evolution kernel of the three-particle distribution amplitudes, which will be the

subject of a future work [46].

– 18 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
1

Acknowledgments

We thank Thorsten Feldmann for useful discussions. Work supported in part by EU Con-

tract No. MRTN-CT-2006-035482, “FLAVIAnet” and by the ANR contract “DIAM” ANR-

07-JCJC-0031.

A Extraction of poles related to UV divergences

In this paper, we compute various integrals in dimensional regularisation to extract the

ε-poles related to UV divergences. The textbook procedure consists in a covariant anla-

ysis, where all space directions are treated on the same footing. Since we use light-cone

coordinates with a privileged direction for the definition and discussion of the distribution

amplitudes, we use a slightly less usual method which we apply on the illustrative integral:

I =

∫

d4l

(2π)4
f(l+)

1

l2
1

(l − k)2
(A.1)

where f is an arbitrary function of l+ alone, corresponding to a gluon line (of momentum

l) attached to a light-quark line (of incoming momentum k). Such an integral is needed

already to compute the mixing of φ± into themselves (ZLO). We want to perform the

integrals over l− and ~l⊥ in 4 − 2ε dimensions and isolate the poles in ε related to UV

divergences. We therefore introduce a small mass m for the light quark to regularise (soft)

IR divergences that are of not interest for the determination of the RG properties of the

distribution amplitudes.

We perform first the integral over l− by identifying the poles in the complex l− plane:

I =

∫

dl+dl−d2~l⊥
2(2π)4

f(l+)
1

l2 + i0+

1

l2 − 2k · l + i0+
(A.2)

which are l− = (~l2⊥− i0+)/l+ and l− = k− +((~l⊥−~k⊥))2 − i0+)/(l+ − k+), whose positions

with respect to the real axis depend on the value of l+. If l+ is negative or larger than k+,

the two poles sit on the same side, and thus the contour integral yields 0. If 0 < l+ < k+,

the two poles are on different sides and one gets a non-vanishing contribution, for instance

by closing the contour in the lower half-plane and thus picking up the first pole (associated

with the l2-denominator):

I =
i

4π

∫ k+

0
dl+

∫

d2~l⊥
(2π)2

f(l+)

k−l2+ + k+
~l2⊥ − 2~k⊥ ·~l⊥l+

(A.3)

Then one can perform the integral over the 2 − 2ε transverse dimensions, which yields

the result:

I = Γ(ε)
i

(4π)2−ε

∫ k+

0

dl+
k+

f(l+)

[

m2

µ2

l2+
k2
+

]−ε

(A.4)

This expression yields a single pole in ε corresponding to the UV-divergent part of the

integral, which enters ZLO. The same procedure is applied to all the diagrams, with

sometimes more involved integrals (up to four propagators), leading to the results quoted

in the present article.
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B Gauge dependence of the diagrams in a general covariant gauge

In this appendix, we collect the integrals from the different diagrams that are proportional

to the gauge parameter (1 − α). For the well known cases (B12), (B15), (B55), (C12),

(C15) and (C55), corresponding to the vertex renormalisation, the integrals have already

been carried out.

(A12) = −ig3
s(1 − α)

CA

2
v̄n/±ΓT auǫ+

×

∫

d4l

(2π)4
1

l+ + q+
{δ(ω − k+ − q+ − l+) − δ(ω − k+)}

×

[(

1 −
l+ + q+

2q+

)

1

l4
+

l+ + q+

2q+

1

(l + q)4

]

(A13) =
i

2
g3
s(1 − α)(CA − 2CF )v̄n/±ΓT auǫ+

×

∫

d4l

(2π)4
1

l4
1

q+
{δ(ω − k+ − q+ + l+) − δ(ω − k+ + l+)}

(A14) = ig3
s(1 − α)v̄n/±ΓT auǫ+

∫

d4l

(2π)4
1

l4

×

{

CF
1

q+
(δ(ω − k+ − q+ − l+) − δ(ω − k+ − q+)−

− δ(ω − k+ − l+) + δ(ω − k+))

−
CA

2

1

q+

(

l+
l+ + q+

{δ(ω − k+ − q+ − l+) − δ(ω − k+)}

−δ(ω − k+ − l+) + δ(ω − k+))

}

(A23) = −ig3
s(1 − α)

CA

2

∫

d4l

(2π)4
1

l+ + q+
{δ(ω − k+ − q+) − δ(ω − k+ + l+)}

×

[(

1

l4

(

1 −
1

2

l+ + q+

q+

)

+
1

2

l+ + q+

q+

1

(l + q)4

)

v̄n/±ΓT auǫ+

+
1

2

l+ + q+

k+ + q+

(

1

(k − l)2(l + q)2
−

1

(l + q)4

)

v̄ǫ/n/+n/±ΓT au

]

(A24) = +ig3
s(1 − α)

CA

2
v̄n/±ΓT auǫ+

×

∫

d4l

(2π)4

[

1

(l + q)4

(

1 +
l+
2q+

)

+
l+
l4

(

1

l+ + q+
−

1

2q+

)]

×

[

1

l+
{δ(ω − k+ + l+) − δ(ω − k+)}

+
1

q+
{δ(ω − k+ − q+) − δ(ω − k+)}

]

(A34) = −ig3
s(1 − α)v̄n/±ΓT auǫ+

×

∫

d4l

(2π)4

[

CF
1

q+
(δ(ω − k+ − q+) + δ(ω − k+ + l+)

−δ(ω − k+ − q+ + l+) − δ(ω − k+))
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−
CA

2

(

1

l+ + q+
{δ(ω − k+ − q+) − δ(ω − k+ + l+)}

−
1

q+
{δ(ω − k+ − q+ + l+) − δ(ω − k+ + l+)}

)]

(A44) = ig3
s (1 − α)v̄n/±ΓT auǫ+

×

∫

d4l

(2π)4
1

l4

[

CF
1

q+

{

δ(ω − k+ + l+) − δ(ω − k+)

+δ(ω − k+ − q+) − δ(ω − k+ − q+ + l+) −
l+
q+

(δ(ω − k+ − q+) − δ(ω − k+))

}

+
CA

2

l+
q+

{

1

l+ + q+
(δ(ω − k+ − q+) − δ(ω − k+ + l+))

+
1

l+ − q+
(δ(ω − k+ − q+ + l+) − δ(ω − k+))

}]

(B12) =
3CA

4

αs

4π
gs(1 − α)

1

ε
δ(ω − k+)v̄n/±ΓT au

v · ǫ

v · q

(B13) = 0

(B14) = 0

(B15) = −
1

2
(CA − 2CF )

αs

4π
gs(1 − α)

1

ε
δ(ω − k+)v̄n/±ΓT au

v · ǫ

v · q

(B23) = −ig3
s(1 − α)

CA

4

∫

d4l

(2π)4
δ(ω − k+ + l+)

×

[

1

q+

(

1

(l + q)4
−

1

l4

)

v̄n/±ΓT auǫ+

+
1

k+ + q+

(

1

(k − l)2(l + q)2
−

1

(l + q)4

)]

v̄ǫ/n/+n/±ΓT au

(B34) = ig3
s (1 − α)CF

∫

d4l

(2π)4
1

l4
{δ(ω − k+ + l+) − δ(ω − k+)} v̄n/±ΓT au

v · ǫ

v · q

(B35) = −ig3
s(1 − α)CF

∫

d4l

(2π)4
1

l4
δ(ω − k+ + l+)v̄n/±ΓT au

v · ǫ

v · q

(B44) = −ig3
s(1 − α)CF

∫

d4l

(2π)4
1

l4
{δ(ω − k+ + l+) − δ(ω − k+)} v̄n/±ΓT au

v · ǫ

v · q

(B45) = ig3
s (1 − α)CF

∫

d4l

(2π)4
1

l4
{δ(ω − k+ − l+) − δ(ω − k+)} v̄n/±ΓT au

v · ǫ

v · q

(B55) = −CF
αs

4π
gs(1 − α)

1

ε
δ(ω − k+)v̄n/±ΓT au

v · ǫ

v · q

(C12) = −
3CA

4

αs

4π
gs(1 − α)

1

ε
δ(ω − k+ − q+)

1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

(C13) =
i

2
g3
s(1 − α)(CA − 2CF )v̄ǫ/n/+n/±ΓT au

×

∫

d4l

(2π)4
1

k+ + q+
δ(ω − k+ − q+ + l+)

[

1

l2(k + q − l)2
−

1

l4

]
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(C14) =
i

2
g3
s(1 − α)(CA − 2CF )

∫

d4

(2π)4
1

l2(k + q − l)2
1

k+ + q+

×{δ(ω − k+ − q+) − δ(ω − k+ − q+ + l+)} v̄ǫ/n/+n/±ΓT au

(C15) =
1

2
(CA − 2CF )

αs

4π
gs(1 − α)

1

ε
δ(ω − k+ − q+)

1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

(C34) = −ig3
s(1 − α)CF

∫

d4l

(2π)4
1

l4
1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

×{δ(ω − k+ − q+ − l+) − δ(ω − k+ − q+)}

(C35) = ig3
s(1 − α)CF

∫

d4l

(2π)4

[

1

l4
1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

+
1

2

[

1

l2(k + q − l)2
−

1

l4

]

1

k+ + q+
v̄ǫ/n/+n/±ΓT au

]

δ(ω − k+ − q+ + l+)

(C44) = ig3
s(1 − α)CF

∫

d4l

(2π)4
1

l4
{δ(ω − k+ + l+) − δ(ω − k+)} v̄ǫ/(k/ + q/)n/±ΓT au

1

(k + q)2

(C45) = −ig3
s(1 − α)CF

∫

d4l

(2π)4

[

1

l4
1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

+
1

2

[

1

l2(k + q − l)2
−

1

l4

]

1

k+ + q+
v̄ǫ/n/+n/±ΓT au

]

×{δ(ω − k+ − q+ + l+) − δ(ω − k+ − q+)}

(C55) = CF
αs

4π
gs(1 − α)

1

ε
δ(ω − k+ − q+)

1

(k + q)2
v̄ǫ/(k/ + q/)n/±ΓT au

As mentioned at the end of section 6, the terms proportional to ǫ/n/+n/± vanish for φ+. In

addition, all the integrals must be understood with an infrared regulator, since we are only

interested in their ultraviolet behaviour.
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